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Lennard-Jones Fluids in Cavities 1 

A. L. R. Bug 2'3 

Static and dynamic properties of Lennard-Jones particles in spherical cavities of 
molecular dimension are studied by molecular dynamics (MD) simulation. The 
local density is a function of the radial coordinate; a layered density profile is 
reproduced by the iterative solution of an approximate BGY equation. The pair 
correlation function exhibits a broadened first-neighbor peak and a second- 
neighbor peak which is shifted inward from its location in the homogeneous 
fluid. The viscosity, as measured by the relaxation of a rotor in the cavity, is a 
function of the cavity radius and may actually decrease as the cavity radius 
decreases. This qualitative trend is reversed when the smooth cavity is replaced 
by a cavity with rough, molecular walls. 

KEY WORDS: dimer; Lennardqones; molecular dynamics; porous media; 
rotational relaxation. 

1. I N T R O D U C T I O N  

The study of fluids which are confined in microscopic pore spaces is of 
technological and theoretical interest. The behavior of adsorbed molecules 
within the interiors of micelles [13 or the voids within a microporous 
structure such as a zeolite [23 is of importance in industrial processes such 
as catalysis and separation [3]. Further, an adsorbed gas may elucidate 
the structure of a porous medium, as in the determination of zeolite struc- 
ture via Xe129 NMR [4]. In such a system, the constraints imposed by the 
walls will play a dominant role in determining structural, thermodynamic, 
and transport properties of the fluid. Predicting the static and dynamical 
properties of fluids in micropores is a current theoretical challenge. 
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This work treats the structure of a neat fluid of Lennard-Jones (LJ) 
atoms enclosed in an idealized spherical pore. While a number of recent 
computer studies have investigated simple fluids (hard sphere and LJ) in 
sheet and cylindrical pores, only a few have treated fluids in spherical 
cavities [-5-7], and to our knowledge, this is the first molecular dynamics 
(MD) simulation of such a system. 

2. STATIC PROPERTIES 

We have simulated a fluid within a constraining pore; briefly, LJ 
atoms are confined within a spherical region of space of radius Re. The 
wall potential is spherically symmetric, and particles within approximately 
0.25a of the wall experience a shallow ( < 15 K) attractive well terminating 
in a repulsive potential which varies, to leading order, as ( R o -  r) -1~ The 
interparticle interaction is considered to be pairwise additive, of LJ 
6-12 form, and the strength and range of the interaction are chosen to 
correspond to xenon: e = 229 K, o-= 4.05 A [8]. The dynamical evolution 
of the system is simulated by intergrating Newton's equations of motion 
using a Velocity Verlet [9] algorithm with a time step of the order of 
0.0055ps. For the simulation, the atomic mass was chosen to be 
129 proton masses, to correspond to the isotope of xenon, which is a 
popular NMR probe of zeolitic solids. 

Figure la shows the density of N =  10 and 15 LJ particles as a func- 
tion of radial position. [-Henceforth, unless otherwise noted, all densities 
are reduced, in units of ~3. Other reduced quantities are marked with a 
superscript asterisk and are defined in the conventional way; one LJ time 

2 unit is ~/(ma/48e).] Cavity radii, Re, are of the order of 2a. An average 
reduced density, p*, is noted, but this quantity is not precisely defined 
because the free volume in the cavity is not fixed [10]; nor is the uncer- 
tainty in volume a negligable boundary contribution. An effective volume 
may be defined as 4~/3 R3~, where R ~  can be defined from the static den- 
sity profile as the radial position at which the density falls, say, to 10% of 
its value. The binding energy of the cavity potential is sufficiently weak so 
that at the temperatures studied, the enhanced density near the cavity wall 
is due entirely to the many body correlations between fluid particles. This 
effect of the exclusion of volume by the particles has been seen repeatedly 
in previous studies of dense fluids in contact with walls and pore surfaces. 

Densities of inhomogeneous fluids have been successfully treated by 
methods such as mean-field density functional theories [11], density 
expansions (with various closures) [-5, 12], model fluid approaches [-13], 
and an approximate BGY equation [-14-16]. The last method has the 
advantage of being simple to implement for a spherically symmetric wall 
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Fig. 1. (a) Reduced density as a funct ion of radial  
posi t ion in cavities of var ious sizes. T = 3 5 0  K 
( T * =  1.5). ( ) N =  10, p * = 0 . 4 5 ;  ( . . . . .  ) N = 1 5 ,  
p * = 0 . 4 5 ;  ( . . . . .  ) N = 1 0 ,  p * = 0 . 8 ;  ( . . . . .  ) 
N = 1 5 ,  p * = 0 . 8 .  (b) I nhomogeneous  reduced 
density. T * = 3 . 0 ;  N =  10; p * = 0 . 4 5 .  ( -) M D  
simulat ion;  ( . . . . . .  ) BGY predict ion for LJ par-  
ticles; ( . . . . .  ) BGY predict ion for hard  spheres. 
(c) g(r), averaged pair  corre la t ion function;  
T * = l . 0 4 ,  p * = 0 . 6 3 .  ( ) N = 1 0 ,  R c = l . 7 2 a ;  
( . . . .  ) N = 2 0 ,  Rc=2.12cr ;  ( . . . . .  ) N = 5 0 ,  
R~=2 .82a ,  ( x ) D a t a  from Ref. 18; ( O )  ex t rema of 
g(r) in second-ne ighbor  region. 
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potential. To close the heirarchy of integral equations at the level of p(r), 
it employs a hard-sphere approximation for the two-point function, and 
this has proven successful in recovering the oscillatory profile of dense 
fluids in contact with solid surfaces. We have used this approach to 
calculate p(r). Details are summarized elsewhere [14, 16, 17]. Briefly, one 
derives a functional equation for p which may be solved iteratively, 
renormalizing the density after each iteration so that 

f) No 3 = 4re p(r) r 2 dr (1) 

One iterates until p(r) has converged to a stable function. 
Figure lb shows an approximate BGY solution along with MD data 

for the density of a 10-particle system, for T* = 3.0. The agreement is quite 
close; the approximate solution slightly underestimates (by about 5 %) the 
density near the cavity wall and overestimates the density at the center to 
a similar extent. For comparison, Fig. lb also shows the BGY prediction 
for a cavity filled with hard spheres of the same radius used in the BGY 
calculation for the LJ particles (arts = 0.972o). This figure suggests that the 
long-range LJ interaction causes particles to cluster near the center of the 
cavity, over and above the clustering produced by the packing of hard 
spheres. 

Of physical interest is the likelihood of observing two particles at a 
given separation. We divide this quantity by p* to obtain an average pair 
correlation function, g(r), and compare this with the static correlation 
function of a homogeneous fluid. This is plotted in Fig. lc, for N = 10, 20, 
and 50; T* = 1.04; and p* ~ 0.63 _+ 0.05. Homogeneous data are taken from 
Verlet [18]. The positions of the first peak for the confined systems are 
aligned with the first peak in the homogeneous system; the location of the 
first coordination shell is determined by atomic parameters and not, at 
these densities, by the wall potential. The amplitude of this peak is greater 
than that of the first peak in the confined systems, due to the absense of 
particle density beyond the cavity wall. The neighborhood of the second 
peak in the homogeneous system changes qualitatively as the system size 
decreases. As Rc decreases, the positions of the second maximum and mini- 
mum (circles) approach each other until they become confluent and vanish, 
at a cavity radius in the neighborhood of 2a (between N =  10 and N =  20). 

The shift in the second-neighbor peak of g(r) with Rc indicates an 
equilibrium fluid structure which is shifted from that of the bulk; this has 
important consequences for the freezing transition of the confined fluid. 
However, an altered structure need not be due to the pore geometry; it 
might owe a great deal to surface and packing effects, which are also 
responsible for altering the structure of an isolated LJ microcluster. 
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3. RELAXATION  OF A C A G E D  D I M E R  

Nonequilibrium MD has been used with success to investigate the 
shear viscosity of homogeneous fluids [19], but this technique does not 
generalize readily to an arbitrarily confined fluid. The rotational relaxation 
of an anisotropic molecule, however, will probe the friction on the molecule 
(which may then be used to define the "effective" viscosity of the 
inhomogeneous fluid). In addition, rotational relaxation times are 
accessible to experiment [20] and often (for example, in the study of an 
isomerization reaction in a micelle [3] )  are of interest because one is 
directly concerned with the ability of some molecule to reorient in the fluid. 
For these reasons, we have studied the reorientation of a caged dimer. The 
dimer consists of two LJ atoms which are rigidly fixed at a given relative 
separation, d; for this study, d =  0.8a. This constraint is achieved with the 
algorithm "Rattle" [21]. One sees that the dimer atoms are found preferen- 
tially in the center of the cavity [29]. 

To understand the effects of cavity size on the reorientation of the 
dimer, we plot the expectation value of the first and second Legendre 
polynomials, (P i [u (o ) .  u(t)] ), i =  1, 2, in Fig. 2a. The argument of Pi is 
the cosine of the angle between a unit vector parallel to the dipole axis at 
some starting time and this vector at later time, t. One averages over 
starting times and over many (200) realizations of the system. Fluids within 
cavities of two different radii and a simulated, homogeneous fluid (periodic 
boundary conditions with the intermolecular potential truncated at 2.5a) 
are compared. All three systems share the approximate reduced density 
p * =  0.45. One finds that the relaxation time for the dimer decreases as the 
cavity size decreases. Figure 2b shows the angular velocity autocorrelation 
function for these systems. The trend in this figure is consistent with the 
previous result: in the smaller cavity, angular velocity relaxes more slowly 
and angular position relaxes more quickly; the rotor rotates more freely in 
the smaller system! In theory, a relaxation time may be defined as the 
inverse of the integral of a correlation function; however, noise at long 
times makes this time difficult to obtain accurately. We have chosen two 
alternative estimates of rotational relaxation times from the data: the first 
is the slope of a linear region on a log-normal plot of (P~)  vs t (if a linear 
region exists which persists over two or more decades of e) and the second 
is the time for the correlation function to drop to 0.5. These times are 
shown in Table I. 

The faster orientational/slower dynamical relaxation of the dimer 
confined in a smaller cavity may seen counterintuitive. As an example of the 
effect of a spherical boundary on a confined rotor, one may consider the 
behavior of a spherical rotor of radius r in the center of a cavity of radius 
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Fig. 2. (a) (Pe[u(o).u(t)]).  T = 3 0 0 K ,  0*=0.45 ,  
d=0.8a .  ( )N=lO ,  Ro=l.93, P1;( . . . . .  ) N = 1 5 ,  
Rc=2.18,  PI;  ( . . . . . .  ) N = 6 4 ,  homogeneous, P1; 
( . . . . . . .  ) N = 1 0 ,  Rc=1.93,  P2; ( - - - - )  N = 1 5 ,  
R c=2.18, P2; ( . . . . .  ) N = 6 4 ,  homogeneous, 
e2. (b) (~o(0) .o~( t ) ) / (o92)  for the systems in a. 
(c) ( P 2 [ u ( t ) - u ( 0 ) ] )  for cavities formed by deleting 
( ) 38, ( . . . . .  ) 116, and ( . . . . .  ) 260 atom cavities. 
p* ~ 0.8; T* ~ 2.5. 
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Table I. Relaxation Times for Linear Rotor  in Cavity a 
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R c = 1.93 Ro = 2.18 R c = oe 

z] • - -  2.13 _+ 0.08 4.14 _+ 0.20 
gl/2 3.19 _+ 0.1 3.36 _+ 0.1 3.78 • 0.1 
z~ ~p 0.98 _+ 0.08 1.28 _+ 0.12 1.58 _+ 0.12 
r~ n 1.70___0.1 1.81 •  1.88_+0.l 
z~, xp 2.6 --+0.3 2.18 •  1.22_+0.08 
~ 2  1.6 -+0.3 1.4 -+0.11 1.1 __+0.08 

a exp, autocorrelat ion function fit to exponential at intermediate times; 1/2, time for 
normalized function to fall to 0.5. 

R with a stick hydrodynamic boundary condition. The exact solution for 
the torque, N, on this sphere is [-22] 

r3R 3 

N = - 8 u t / ~ r S _  r3 co (2) 

where co is the angular velocity of the sphere. Thus, one may think of the 
cavity as inducing an effective fluid viscosity of rlR3/(R3-r3). If one 
assumes an exponential model for the relaxation of the angular velocity of 
the sphere, then the ratio of (N> for two systems with identical values of 
q and temperature and with cavity radii R< < R > will be inversely propor- 
tionally to the ratio of the two relaxation times. Thus, 

R< R -r 3 
r < - R  3 R 3 - r  3 >~1 (3) 

Although Eq. (3) applies quantitatively only to exponential relaxation and 
to spherical rotors, the qualitative trend predicted by hydrodynamics must 
be that smaller cavities yield a relaxation of angular velocity which is faster 
than (or equal to) the relaxation in larger cavities with the same bare 
viscosity r/, temperature, and boundary conditions. 

It has long been recognized that the molecularity of the solvent may 
produce rotational friction in a uniform fluid which differs from the predic- 
tions of hydrodynamics. For example, theories which consider discrete 
shells of solvent [23], collisional effects [24], and free spaces in the solu- 
tion [25] have been proposed. These emphasize the capability of small 
rotors to engage in "subslip" rotation, in which relaxation behaviors inter- 
mediate between hydrodynamic slip and free rotation are observed. The 
rotation of the caged dimer, since the granularity of the fluid is more 
pronounced for smaller cavities of the same rough density, may be related 

840i1012-13 
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to this phenomenon. The potential of mean force seems to hold the rotor 
preferentially in the cavity center [29]; an explanation might involve 
correlated rotation of dimer and solvent shells. Since rotation of the 
roughly spherical shell of monomers and the walls is a slipping motion, the 
enhanced rotation of the dimer with its surrounding coordination shell is 
reminiscent of slip linear flow in a narrow capillary. In a smaller cavity, the 
smaller amount of ambient solvent simply produces less dissipation of the 
dimer's rotational motion. Finally, we note that subslip behavior need not 
be invoked to find the angular relaxation time for the dimer in a uniform 
fluid. We consider a dense fluid, use r/*=5.977 [19] for a fluid with 
p* = 1.05 for T* = 2.5, and substitute into the Perrin [26] expression for 
the relaxation time for an ellipsoid with an axial ratio corresponding to the 
dimer (1.8/1). An estimated relaxation time is then %tick = 62.9LJ. Hu and 
Zwanzig [27] have calculated the factor by which one must correct this for 
a slip hydrodynamic boundary: "Csl ip / 'Cs t ick ,~0.171 , SO that 27slip = 10.74LJ. 
This is in excellent agreement with a measured value of z = 10.60 from MD 
simulation [29]. For  the more dilute uniform fluid in Fig. 2a, this value is 
of the order of ~ = 3.8L J, in reasonable agreement with the data (Table I). 

To determine whether the relaxation of the dimer can be attributed to 
rotational diffusion, one may examine the ratio, Zl/%, of the relaxation 
time of ( P I )  to that of (P2) .  The solution to the angular diffusion equa- 
tion would predict that ( P i )  has an exponential form and that the value 
of this ratio is 3 [28]. From Table I, the ratio of the values of z bound by 
modeling ( P i )  as an exponential gives Zl/% = 2.62 +_ 0.35 and 1.66 _+ 0.25 
for the homogeneous and 15-particle system, respectively. The former is 
roughly consistent with diffusion in angle space (although slightly low); the 
latter is too low. A second condition on angular diffusion is that the relaxa- 
tion time for angular velocity correlations is much shorter than %. The 
ratios of these two times are roughly 0.29 and 1.03 for the homogeneous 
and 15-particle caged system, respectively. Again, the homogeneous system 
might be reasonably modeled by angular diffusion; the relaxation of 
the caged dimer has too strong a ballistic character. For these systems, a 
more general relaxation model, such as extended diffusion [28], seems 
appropriate; a longer report on these data will appear elsewhere [29]. 

Our final set of data concerns the dynamics of the dimer in a more 
realistic molecular pore. An FCC lattice of spherical atoms is constructed, 
and a cavity is formed by removing successive nearest-neighbor shells of 
atoms, beginning with a set of six atoms with a cubic symmetry. Around 
each cavity, two nearest-neighbor layers of solid are allowed to remain, and 
the rest of the solid atoms are deleted. These atoms form a close packed 
structure with atomic diameters of unity in LJ units. The cavity is then 
filled with a dimer and a number of fluid (d=0.8;  ~ - -1 )  atoms which are 
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Fig. 3. Stereo view of dimer in 38-atom WCA cavity. 

free to move. A stereo view of the dimer in such a cavity is seen in Fig. 3. 
The fluid-fluid, fluid-dimer potentials are LJ; the potential between the 
cavity atoms and the fluid atoms is Weeks-Chandler-Anderson [30]. The 
latter is a LJ potential at short separations which is truncated to a constant 
value at r = 21/6(7, the potential minimum. 

Figure 2c shows ( P 2 [ u ( t ) . u ( 0 ) ] )  for cavities formed by deleting 38, 
116, and 260 close-packed atoms, respectively. [Each of these numbers 
should be multiplied by (4rr/3)/0.74 to derive the approximate volume of 
the cavity in units of a3.] These cavities were filled with 20, 64, and 145 
solvent molecules (plus dimer), respectively, so that p * ~  0.8; T * ~  2.5. In 
contrast to the smooth-cavity data, the reorientation of the dimer is 
significantly slower in the smaller cavities. The relaxation of the dimer in 
the largest cavity shown is more than a factor of two slower than is the 
case for the dimer in a homogeneous system at that density. 
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